Name \qquad Date \qquad
Show the division using disks. Relate your model to long division. Check your quotient and remainder by using multiplication and addition.

1. $7 \div 2$

Ones

$2 \longdiv { 7 }$
Check Your Work
quotient $=$ \qquad
remainder $=$ \qquad
2. $73 \div 2$

Tens	Ones

$2 \longdiv { 7 3 }$
quotient $=$ \qquad
remainder $=$ \qquad
\square
3. $6 \div 4$

Check Your Work
4. $62 \div 4$

Tens	Ones

$4 \longdiv { 6 2 }$

5. $8 \div 3$

$3 \longdiv { 8 }$

Check Your Work

quotient $=$ \qquad
remainder $=$ \qquad
Check Your Work
6. $84 \div 3$

Tens	Ones

$3 \longdiv { 8 4 }$

Check Your Work
quotient $=$ \qquad
remainder $=$ \qquad
-

Name \qquad Date \qquad

Solve using the standard algorithm. Check your quotient and remainder by using multiplication and addition.

| $1.44 \div 2.84 \div 4$ |
| :--- | :--- | :--- | :--- |

7. $91 \div 6$	8. $91 \div 7$
9. $87 \div 3$	10. $87 \div 6$
11. $94 \div 8$	12. $94 \div 6$

Name \qquad Date \qquad

1. When you divide 86 by 4 , there is a remainder of 2 . Model this problem with place value disks. In the place value disk model, how can you see that there is a remainder?
2. Francine says that $86 \div 4$ is 20 with a remainder of 6 . She reasons this is correct because $(4 \times 20)+6=86$. What mistake has Francine made? Explain how she can correct her work.
3. The place value disk model is showing $67 \div 4$. Complete the model. Explain what happens to the 2 tens that are remaining in the tens column.

4. Two friends share 76 blueberries.
a. To count the blueberries, they put them into small bowls of 10 blueberries. Draw a picture to show how the blueberries can be shared equally. Will they have to split apart any of the bowls of 10 blueberries when they share them?
b. Explain how the friends can share the blueberries fairly.
5. Imagine you are drawing a comic strip showing how to solve the problem $72 \div 4$ to new fourth graders. Create a script to explain how you can keep dividing after getting a remainder of 3 tens in the first step.

Name \qquad Date \qquad

1. Maria solved a division problem by drawing an area model.
a. Look at the area model. What division problem did Maria solve?

b. Show a number bond to represent Maria's area model. Start with the total, and then show how the total is split into two parts. Below the two parts, represent the total length using the distributive property, and then solve.

\qquad
\qquad
$=$ \qquad $+$
$=$ \qquad
2. Solve $42 \div 3$ using an area model. Draw a number bond, and use the distributive property to solve for the unknown length.
3. Solve $60 \div 4$ using an area model. Draw a number bond to show how you partitioned the area, and represent the division with a written method.
4. Solve $72 \div 4$ using an area model. Explain, using words, pictures, or numbers, the connection of the distributive property to the area model.
5. Solve $96 \div 6$ using an area model and the standard algorithm.

Name \qquad Date \qquad

1. Solve $35 \div 2$ using an area model. Use long division and the distributive property to record your work.
2. Solve $79 \div 3$ using an area model. Use long division and the distributive property to record your work.
3. Paulina solved the following division problem by drawing an area model.

a. What division problem did she solve?
b. Show how Paulina's model can be represented using the distributive property.

Solve the following problems using the area model. Support the area model with long division or the distributive property.

4. $42 \div 3$	5. $43 \div 3$	
$6.52 \div 4$		

10. Ninety-seven lunch trays were placed equally in 4 stacks. How many lunch trays were in each stack? How many lunch trays will be left over?
